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Fast Frequency Sweep Technique for the Efficient
Analysis of Dielectric Waveguides

Sergey V. Polstyanko, Romanus Dyczij-Edlingelember, IEEE,and Jin-Fa LeeMember, IEEE

response computations of an arbitrary two-dimensional (2-D)
waveguide. This technique is based on the tangential-vector finite- X \ \
element method (TVFEM) in conjunction with the asymptotic ‘ j (] [o]
waveform evaluation (AWE) technique. The former is used to /
obtain modes characteristics for a central frequency, whereas
the latter employs an efficient algorithm to compute frequency
moments for each mode. These moments are then matched viarig. 1. General anisotropic optical waveguide.
Pade approximation to a reduced-order rational polynomial,
which can be used to interpolate each mode over a frequency
band with a high degree of accuracy. Furthermore, the moments set of constraint equations, the nonphysical solutions can be
computations and subsequent interpolation for a given set of completely suppressed and the solution space is limited only
frequency points can be done much more rapidly than just simple to physical modes
simulations for each frequency point. 1 : . .
A H(curl) TVFEM has been previously implemented to
Index Terms—Approximation methods, dielectric waveguides, perform a full-wave analysis of an anisotropic waveguide,
slseizgtromagnetlc propagation, finite-element method, signal anal- \ hich s characterized simultaneously by both off-diagonal
' second-rank symmetriz] and [1] tensors [11]. However, if
one wants to compute a dispersion curve with the propagation
|. INTRODUCTION constant versus frequency over a given frequency band, this

OMPUTER-AIDED numerical analysis has become gnalysis has to be repeated for many sampling frequency
Cnecessary tool for designing microwave and opticé’IOimS- (_Zonsequen_tly, the entire process can become very_time
waveguiding structures such as microstrip lines, opticPnsuming, especially when the number of frequency points
channel guides, and optical fibers. Different numericRecomes large and the number of unknowns is significant.
techniques have been presented in the past to solve a widé® avoid this difficulty, a new approach based on the
variety of dielectric waveguide problems [1]-[5]. Amongasymptotic yvavef_orm evaluation (AWE) [12] has b_ee_n devel-
them is the finite-element method (FEM), which is probabl9ped- Starting with the known ques’ characteristics _fqr a
the most versatile [3], [6][8]. By discretizing the waveguid&entral frequency, the AWE technique employs an efficient
cross section into a number of triangles and employing tRégorithm to compute frequency moments for each mode.
variational technique, the FEM can be used to accuratelj)eS€ moments are then matched via &agproximation
predict the propagation characteristics of any arbitraf9 @ reduced order rational polynomial with a high degree
waveguide. of accuracy. Furthermore, the moments computations and

It has been shown by previous researchers that by usiti§PSequent interpolation for a given set of frequency points
the tangential-vector finite-element method (TVFEM), electr§2n be done more rapidly than just simple simulations for each
magnetic (EM) characteristics of propagating modes in wavef§gquency point. To verify the proposed approach, the method
uides can be obtained without the occurrence of so-callf@s been implemented and tested for sample waveguiding
spurious solutions [9]-[10]. However, these spurious solutiof§uctures and the resultant dispersion curves are compared
are not completely eliminated, but are reduced to a set With those obtained by the/g(curl) TVFEM. The details of
identifiable nonphysical solutions corresponding to the nufit® formulation, error estimation, and sample numerical results
space of the generalized eigenmatrix equation. Consequentfj}l be discussed in the following sections.
they can slow down the convergence of desirable modes during
the solution process and cause additional complications. In II. EORMULATION
this paper, an additional set of constraint equations for the
generalized eigenmatrix equation is introduced. By using thAs.

Abstract—This paper describes a new approach to spectral /’\
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Time-Harmonic Maxwell’s Equations
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equations can be written as Il FINITE-ELEMENT IMPLEMENTATION
VxE= _ijO[N1‘]ﬁ7 V. [N1‘]ﬁ =0

S - - - A. The Bilinear Form
V x H = jweyle,|E + [0]E, Ve]E=0 (1)

_ o Equations (6) and (8), and boundary conditions (10) describe
where[e,] and [,] are the relative permittivity and perme-a well-defined boundary value problem (BVP) and are ready
ability, respectively, ands] is the conductivity tensor. In this for the application of the FEM. Application of the Galerkin's

paper, they are assumed to be diagonal tensors. Furthermg{gthod for the current BVP results in the following bilinear
in the frequency domainle,.] and [¢] can be combined to form:

define a complex effective relative permittivifg.] as
: B(7,@) = / (EM(V, X 8,) - (Ve X @) — K23, - [6],d,
Q

(&) = o] = = [o]. ) o
weo + V‘rvz : [?T]TVTGZ +]kOU‘r : [?T]TVTGZ
To solve for the wave-propagation characteristics, start by + koY rvs - [Glrids O
expressing the fields as
— e . — 2 '3 . a. €.
‘E'(f7 t) — 8($7y)6—"/z6]wt Yy /Q{U-,— [1/]-,—@-,— + 6zzvzaz}d9 (ll)
ﬁ(f, t) = 7:[(3:, y)e_wej‘“'t (3)

whered, @ are the testing and trial fields, respectively. Notice
wherey = « + jj is the propagation constant with, 4 that in an effort to balance the smoothness requirements on
being the attenuation and phase constant, respectively, &agh the trial and testing fields, Green’s theorems are adopted
7 = (z,y,72) denotes the position vector of a point in thdo derive (11). Moreover, to facilitate this paper’s discussion,

waveguide. a vector notation has been employed for the potentials as
__[a, A,
B. A—V Formulation a= Lll = [‘P } (12)

In the current formulation, a vector potential, and a scalar ) - o
potential,, are used as unknown variables. They are defindddging from the bilinear form (11), a vector field is

through the fields as admissible in the bilinear form if, and only fif,
B=VxA E=—jwd-cVe. @) deV={F: 7 (L),  V,xT -2€ L),
Also, it is well known that the vector potentiaf defined by vz € CO(Q)} (13)

(4) IS not unique Wlthom imposing a gauge condition. Ir]SteawdhereLQ(Q), C°(£2) are the sets of square integrable functions
of using the conventional Coulomb or Lorenz gauge,= 0

is chosen. This condition will greatly simplify the formulation.and continuous functions ift, respectively.

By using (1)—(4) and the gauge conditighy = 0, Maxwell's

equations become
- _ o e In the Galerkin's process, one needs to find a complex
VX[V x Ar — kg[e”]‘flf + kol ]V =0 numbery and a vector functio& € V, such thatB(7, @) = 0
—jkoV - [&]A- =V - [&]Ve =0 (5 for every in the infinite dimensional spacé. The FEM is
nothing but replacing” by a sequence of finite dimensional
subspaced’” contained inV. In the present approach;”
has been chosen to be spanned byfjécurl) TVFEM basis
- . ) - o o functions. Mathematically, a finite dimensional vector space is
Ve Xz Ve X Ar = 7 V] A = Kgler]r Ar defined ast*(curl; "), for a 2-D discretizatio?" as
+jk0[6_r]‘rv‘r§0 =0 (6)
ACE [V]TAT — JkovEz =0 (7)
—jkoVy - [EG)rAr = Vi [6]-Vrp —72E.0 =0  (8) whereP,(Q") is the set of piecewise polynomials §i* with
order complete tak. The function spaces;1(2*) can be

B. Two-Dimensional (2-D}<}(curl) TVFEM

whereky = w?eopp is the free-space wavenumber andl =
[1+] 7! denotes the inverse matrix §f,.]. Taking into account
thatV = V.. — 42, (5) can be rewritten as

HE(curl; Q") = (P(Q"))? @ Spp1 (21) (14)

where | .
) cah e omained by subtracen S = (T |7 € (BU@)2. (@, V4" =0,
Equation (7) can be obtained by subtracting (8) from (6). Vo € ﬁ’kH(Qh)} as)

Subsequently, in the current formulation, the focus is on

solving (6) and (8) simultaneously. Furthermore, boundagy,q pk(gh) is the set of piecewise homogenedtth order

COﬂditiOl:\S associated with t,his formulation are polynomials inQ2". The function spacé(X(curl; Q") is further
on PEC’s on PMC’s defined by

ix A =0 7 x ([V]V_x A)=0 (10)
=0 [ ]-GkoAr + Vo) -7 =0 HE (curl; Q) = {172 | 7 € H¥(curl; QM),

where1 is the normal vector to the boundary. A x 7" =0on FPEC}. (16)
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where} , means the summation over the contributions from
each element and_, a, are the corresponding coefficient vec-
tor for the finite dimensional approximation @f*. Moreover,
the element matrixes in (19) are given by

Al = [ (v, W) (7, x W)
— K2W; - [6], W, L0
5], = /Q (s 1,7,

(€], = jko /Q {W; - (61,155 92

Fig. 2. 2-DM/}(curl) tangential vector element.

Henceforth, the finite dimensional spat@ that is used in [D]. :/Q {Vethi - [e]- Vip; 1
the current FEM formulation is ‘
= {i"| e Hy(curl; Q1), o € Py(Q"), [E]. :/Q {E2thip; Q. (20)
v =0o0n FPEC}. (17) The integrations in (20) are performed on triangular regions.

To make the computation faster, the matrix equation (19) is

Note that in choosing the FEM space as in (17), the follow
rearranged as

ing statement is validvz* € V*; thus, we haveVy! €
H(curl; Q). Explicitly, for a triangular element there are I[B] 0 } |:Q‘r:|
eight vector-basis functions and six scalar-basis functions for. © [E]

the finite-element spadé™ (Fig. 2). Each trial/testing function 1 (Al [C]] | g2|[B] O a | (0
@ e V" can now be written as T 42462 q[C]t [D]} + { 0 [E]D {gj (21)

P , where[A] = Al. and so on, an®? = k2 - fimax - €max
Za} W} a - Za i (18) is an e[d&catezdggelge]ss, which can be obtain(:edltjy a quasi-TEM
approximation for an isotropic medium. The reason for this
transformation is as follows. In a lossless dielectric waveguide,
a more dominant mode corresponds to a smaftevalue and

=0
where the six scalar—basrs functiofis are the usual second-
order FEM basis functions, namely

Yo = 260(§0 — 1/2) as a result, the /(2 +62) ratio will be larger. It turns out that

1 = 261(61 —1/2) although the Lanczos algorithm can compute both the smallest

Wby = 265(€2 — 1/2) and the largest eigenvalues, the latter almost always converges
faster than the former one. Furthermore, from (20) and (21),

s = 4016 it can be concluded that for an anisotropic waveguide charac-

s = 48o&2 terized by diagonal permittivity and permeability tensors, the

Ps = 46od1 generalized eigenmatrix equation involves two complex, but

symmetric, matrixes. Subsequently, savings in computational

and the eight vector basis functions are given by ! X . .
N time and storage can be realized by taking advantage of this
Wo =86V - &V symmetry.
Wi =&6VE +6VE
Wa =&V — &VE

W = £4VEo + £0VEs D. Constraint Equations
Wy = &VEL — £V The eigenpair solutiongv;,a) to (21) can be divided
W5 =& VEL+ 6V into three groups as follows. The bilinear form (11) and,
We = 4£1(£2VE0 — £V Er) subsequently, the generalized eigenmatrix (21) are derived
W7 = 4&3(40VEéL — &1V &) based on (6) and (8). The solutions of (6) and (8) are
where¢; is the Lagrangian interpolation polynomial or simpleguaranteed to be nontrivial solutions of Maxwell's equations
coordinate at vertex [13]. only if v # 0. When~y = 0, there are two possibilities:
the cutoff modes, which are still solutions of Maxwell's
C. Generalized Eigenmatrix Equation equations, and the trivial solutiong = [”3;] # 0, but
A generalized eigenmatrix equation can finally be obtained = —jwA-—cVy = 0. To summarize, the eigenpaifs;, d')
by settingB(, @) = 0 for everyd”* € V". The result is can be divided into three groups
Z q[g],; [g]e D [QT} group 1 (physical modes):
o\l [Ple]) e v #0, EB=—jwAl — Vel #£0
2 Z [Ble 0 ar (19) group 2 (cutoff modes):
0 [E]e a, = . T i
Q. # v =0, E;=—-jwA.—cVe"#0
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group 3 (triVial mOdeS): 4) f = [A]Um - hm,m[B]Um - hm—l,m[B]Um—la where
v%=0, k= —iji - cV<pi =0. X v;",;[A]vm X Urz;l—l[A]U"l
m,m — U,E[B]Urn’ m—1,m — Ug:l_l[B]Urn—17

This paper’s objective is to develop a constrained Lanczos
algorithm which will solve for the solutions in group 1 and 2 5) orthogonalizef
without the occurrences of group 3. To achieve this goal, one (a) to previously converged vector;(i = 1,---n):

first notlfes that _the group 3 solutions form a vector function F=f-r diX, di = XiT[; ) ~

spaceVyy;; . defined as (b) to the null spacéyr: fr = fry f. = =GT fo;
Vi = { {Uf} B —Gu. = £ Vrvz} (22) 6) sc_>|ve forgm+1 from_y_i}la:m*l = f, and seth,1m =

z 0 ||xm+1||, Upmgl = ”;};m—+1”,

whereG is a gradient operator scaled by thék, factor, and 7) calculate (A\(™) (™)) of the triangular matrixH,,

obviously V{1 € V. Furthermore, the number of trivial where

modes, or the dimension ol ;, equals the number of hi1 hio

free nodes in the second-order discretization. Although these h2:1 h2:2 ha.3

trivial solutions can be easily identified and disregarded at the 3/ — hao has :

post-processing stage, their presence can significantly degrade
the performance of the Lanczos algorithm. Therefore, a con- Bt R
strained Lanczos algorithm, which completely suppresses the ’ " (25)
occurrence of these trivial modes, will enhance the numerical8) check the residual norm: hm+17,n|y,(,§”)| for conver-
efficiency and stability. gence; if not converged, increment by 1 and go to
step 4;
E. Orthogonality Relations 9) incrementn by 1. If all desired modes have converged
(n = N) then stop, otherwise go to step 1.
The authors would like to comment here that theoretically, if
the initial vector is constructed in such a way that it satisfies
/ (*Tz - [V]dl +€zzaiai) =6 (23) (24), their solution becomes orthogonal to the subspace of
Q trivial solutions. The purpose of step 5(b) is simply to avoid
where §;; is the Kronecker delta function. Equation (23) ishe accumulation of a rounding error. Practically, step 5(b)
the basis for the constraint equation, which will be used itan be performed selectively.
the constrained Lanczos algorithm. Since a physical solution
C:L:]‘ from}group 1 or group 2 must be orthogonal to any IV. ASYMPTOTIC WAVEFORM EVALUATION
a < VoL _through (23), the constraint equation for_ th.e It has been previously shown that the FEM formulation for
physical solutions reduces to the following matrix equation

‘the EM wave propagation in 2-D waveguiding structures leads

From (11), the following orthonormal property exists for
the eigensolutions:

[WIGT of] {[ﬁ] g } [QT} _ 0 to a matrix equation of the form
) e P(F)e(f) = MDQDa() (26)
= [¢" I]{ 0 [E]} {j} =0 (24) whereP(f) andQ(f) are the s ixefs
a, guare complex matrixefsis a

where matrixe§B] and[E] are given by (20). Equation (24)given f_requencya: represents the.unknown fieI(_j componen_ts,
can be used as a set of additional constraints to restrict (il A 1S related to the propagation constant itself. Equation

solution space to the group 1 and 2 solutions in the LancZsd) can be solved di_rectly for the unknoyvn eigenpé_k,sa:ﬁ
algorithm. by using the constrained Lanczos algorithm described above.

However, if one is looking for the solution over a given
frequency bandf?, f1] the entire process has to be repeated
for a set of frequencie$f; }i=Z', such thatf® = fo < f1 <

By incorporating the constraint equation (24) into the gen-. < fy = f! to find eigenpairs()\;, z;). After that, the
eralized algorithm, the following algorithm can be used teigenpairA(f),z(f)) for any arbitrary frequency within the
find N eigenpairs of the generalized eigenmatrix equatidnterval [f°, f!], can be determined based on an interpolation
[A]z = A[B]x without the occurrences of group 3 solutions:technique such as linear, quadratic, or spline approximation.

F. Constrained Lanczos Algorithm

1) input an initial guess’, and sety® = [B]z°; However, if one deals with a big problem, or the number

2) orthogonalizeg® of sampling pointsN is large, then the entire analysis can
(a) to previously converged vector§;(i = 1,---n): _become very time consum_ing. Consequently,_this paper’s goal

P =g =" aX;, ¢ = XEgO is to develop an alternative method for which the spectral
responses over a given frequency range can be determined

(b) to the null spacéi; . 72 = 3% 30 = —GT 3%
3) solve [B]Jz* = g, and normalizer! to obtainv; =
1
fery (m = 1);

efficiently.
To achieve the above goal, a fast frequency sweep (FFS)
technique is proposed and implemented in this paper. The FFS
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approach proposed herein is a combination of the TVFEMurthermore, from (20), it can be seen that mag@igt) has
described in previous sections, and the AWE technique. Tarly the Qy component, whereas matriR(k) has contribu-
latter has been successfully used for the analysis/simulatimons from?Py, Py, P». Substituting (30) into (28) and matching
of 2-D/three-dimensional (3-D) interconnect structures on ithe coefficients of corresponding power @ — k), we end
tegrated circuits and has recently gained much attention frarp with the following recursive system of equations to solve:
the computer-aided design (CAD) community [12], [14]-[16].

A number of papers have been devoted to AWE as the method (Po = A0Qo)z1 = QoA — Prixo

for computing an approximation of the response of a linear

circuit from the circuit's low-order moments. Furthermore, the?  (Po = A0Qo)zi = Qo(Xiwo + -+ - + Aizi—1)

method has been proven by many researchers to be an efficient ~Pawi—g = Prwi—1

and accurate technique for simulating a lumped linear circuit

of arbitrary topologies. N: (Po—=20Qo)xny = Qo(Anzo ++ + Aiwn—1)
Several attempts have also been recently made to apply —Parn-2 = PraN-1. (31)

the AWE technique for EM problems and the validity of the=qation (27) must first be solved for the central frequeficy

approach has been shown [17]-{19]. In this paper, the AWfing the constrained Lanczos algorithm described previously.
method is extended, based on the rational function approji+s worth mentioning that sincéo, zo) is an approximate

mation for modeling wave propagatiorj in 2-D Wf”WeQUidingolution to (27), the matrixP, — \oQp is nonsingular and
structures. Furthermore, the power series expansion and rafigs pe factorized numerically. Taking into account thgt
nal function approximation are compared, and the results ;gf o eigenvector of (28), and multiplying (31) by, A

the authors” accuracy are presented. consequentlyz; can be found recursively. Furthermore, in
) this procedure the orthogonality relatiaf Qoz; = 0 must
A. Taylor Expansion be satisfied fori > 0 to insure the numerical stability.
We begin with the following previously obtained general- Consequently, in the above process one has to solve the
ized eigenmatrix equation: symmetric eigenmatrix equation (27) only once for the central

o R frequency point. After that, the corresponding Taylor series
{[A]T [C]} {AT} =2 [[B] 0 HAT} (27) expansion is found by solving (31) with the same matrix
[€T" [D1] L= 0 [E]] Ly (Po — AoQo) but different right-hand sides (RHS's). This
where the element matrixes are the same as those givenPpgcess can be performed efficiently once the factorization of
(20). To facilitate this discussion, (27) is simply rewritten agnatrix (Po — AoQo) becomes available.

k)z(k) = Mk)Q(k)z(k 28
Pk)z(k) (k) Q(k)(k) (28) B. Pad Expansion
where matrixesP(k), Q(k), and eigenpairgA(k),z(k)) are  |n many cases, the power-series expansion for the solu-
in general functions of the wavenumbleras follows: tion of eigenmatrix equation (27) gives fairly good results.
[14]  [C] However, the situation is different if one wants to find an
P(k) = [c]* [D]} approximate solution in the proximity of a pole or some other
. singularity of the desirable function. In such cases, Taylor
[B] © . . . : .
Qlk) = expansion fails to converge, whereas rational interpolation
| 0 [E] . ; .
L may still provide satisfactory results. Subsequently, one may
(k) = AT} (29) want tq replac.e the Taylor expansion by the so—cqlledePad'
¥z expansion to improve the accuracy of the numerical solu-

These quantities are first expanded by Taylor series arodiff’- In this section, the authors’ explain how to construct
k = ko. Namely a rational function for the eigenvalugk). The extension of

this approach to the eigenvector is straightforward and is not

]\T . . .
; given here. Using the Taylor expansion, one can express an
P(k) = Zpi(k = ko) eigenvalueX(k) as
=0
N ‘ N
P(k) =Y Pilk = ko)’ AE) =3 ik — ko)’ (32)
=0 =0
N
ok) = Ok — ko) whereas in the Padéxpansion, one employs a rational poly-
() ; ( ) nomial A to interpolateA(k) as
N
. L M
Ak) =) Nk —ko) i i
(%) ; ( 0) Alk) = <sz(/f — ko) )/(1 +Z(h(’f — ko) ) (33)
N =0 =1
(k) = Z z;(k — ko). (30) The rational functiom\ is defined by itsL. + M +1 coefficients
i=0 (to be determined later). For a given amount of computational
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effort, one can usually construct a rational approximation " T T ™ —
which has a smaller error than a polynomial approximation. 5.0 | 4m o Samsion !
Furthermore, for a fixed value of + M, the error is the reference curve -
smallest whenPr (k) and Qa; (k) have the same degree, or a0} o 7
Pr(k) has a degree one higher th&m,(k). The rational 2m £=30 g
; ; - : W= 1.0 Im -
polynomial A(k) is constructed in such a way that it agrees ol
with A(k) at ko and their derivative up td. + M degree at = I | o
k = ko. These conditions result in a system bf+ A + 1 Zm |
linear equations to solve. Namely z.or B
)\0 —Po = 0 1.0 F o "“H,.«es" J
@ro+A1—p1 =0 »,.*__:%b &
@M+ @A+ A2 —p2=0 0-0 0 20 40 60 80 100 120 140
Freqg[MHz]

QMAL-M + Q-1 AL—p+1 T+ AL —pr =0 (34)
Fig. 3. Dispersion curve of the fundamental mode for the partially filled
and waveguide. Central frequency has been chosen tgpybe- 70 MHz. Inset
shows a dielectric waveguide filled with an isotropic material.

AMAL—M4+1 M —1AL—M42 + -+ QAL + Ap41 =0

aMAL—mM+2t Qu—1An-m43+ -+ @A L41 + A2 =0 0 Taylor expansion —
QAL+ Q1AL+ -+ @ Anym—1 + ALy =0, 1.0t L Pade expansion —— 1
(35) 0.0} /
The M equations in (35) involve only the unknowns % o
qi,++,qm and, thus, must be solved first. Equations in § -2.0
(34) are then used to fingy,---,pr. Onceq,---,qn and ERE
po, -+ -, pr, are determined, (33) can be used to compute the g
propagation constant at any frequency. The above-described or
procedure can be repeated to interpolate each component of -5.0 ‘
the eigenvector:(k). col
V. NUMERICAL RESULTS 0y 20 40 s so 100 120 140

i Freq[MHz]
To validate the proposed approach, several examples have

been studied. In this paper's first example, the FFS meth5'8' 4. Error versus frequency for the central frequefigy= 70 MHz.

was applied to a partially filled isotropic waveguide. Then,

the method was tested on an anisotropic waveguide. Finallgsearchers. For the geometry shown in the inset of Fig. 3, the
a shielded microstrip line and a coplanar waveguide weegtoff frequency of the dominant mode equals 31 MHz. The
considered. For each example, a dispersion curve with théthors’ objective was to demonstrate that the FFS method
propagation constant versus frequency has been computed.@@dy correctly predict mode characteristics below the cutoff
all examplesZ and M values have been chosen to be equal feequency.

15. The results were compared with the solution obtained byThe H§(curl) method is initially used to plot the reference
using the TVFEM for different frequency points. Furthermorglispersion curve for the dominant mode over the frequency
to perform an accuracy study of the proposed method oveingerval from 1 to 140 MHz (Fig. 3). The FFS technique is

frequency range, the error is defined by then applied for the dominant mode starting with the known
mode characteristics fgf, = 70 MHz. Two dispersion curves,

error— | P k)z(k) = A(k) Q(k) (k)| (36) computed by Taylor and Padxpansions, have been obtained
|x(k)| and plotted in Fig. 3 forf € [1 MHz, 140 MHz]. From Fig. 3,

h 1 1 h . ¢ 28 one can conclude that for the frequencies smaller than 31
where P(k), Q(k) are the exact matrixes from (28) andMHz, the dominant solution becomes an attenuating mode,

A(k), x(k) are the apprommatg SOIUt,'OHS' To compare tr\‘faut still the Pad approximation has a good agreement with the

performance of Taylor and PadExpansions, the error VerSUSeterence curve. On the other hand, the power-series expansion

frequency for each example have been plotted and compgirs for frequencies smaller than the cutoff. Error analysis (see

isons have also been made. Fig. 4), based on (36), only confirms the above conclusion and

. ) i suggests that in general, Radxpansion may have a potential

A. Partially Filled Waveguide advantage over Taylor expansion for physical problems with
To verify the proposed FFS method, a rectangular waveemplex zeros and poles. Furthermore, it is worth mentioning

guide partially loaded with a dielectric was first studied, whicthat since{\q, zo) is an approximate solution to (27) the error

is a well-known example that has been analyzed by maisynot exactly O at the central frequency.
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10.0 T T T T 2.0 T T T T —
1.30m Taylor expansion < Taylor expans?on e
9.0 l‘—"{ Pade expansion * A 1.0 Pade expansion -—-- -4
—— reference curve -
8.0 o 4 0.0 4
..
1.60m 7 L ]
7.0 | 0.82m et = -1.0
. "::'-‘*' S A
60l - - e | 20 r .
S
oy "—-{ - o }.9 g
5.0 F 0.55m o o ] S -3.0 | |
ot * o
- » K
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a strip, which is assumed to be an infinitely thin PEC. The
dominant mode, which is used for transmission purposes, is
In this example, a rectangular waveguide is studied, whithe one having a zero cutoff frequency. At cutoff, it reduces

is loaded with an anisotropic rectangular insert (Fig. 5). THe a transverse electric and magnetic mode.

dielectric is made of Ti@, a material having a very high The solution procedure starts by solving for the normalized

permittivity ¢,,, = 170 and¢,, = ¢,. = 85. The interest in propagation constant by using th¢j(curl) TVFEM. After

this problem arose in connection with the realization of masthat, the FFS analysis was carried out for the central frequency

amplifiers in the high-frequency region. fo = 200 MHz. Both Taylor and Pa&lexpansions have been
The objective for this example was to demonstrate that thétained from 1 to 500 MHz, and results are plotted in Fig. 8.

FFS technique proposed herein is able to predict multimodeke results shown, as well as the error analysis in Fig. 9, prove

characteristics based on one central frequency point. Referetie the rational polynomial approximation is more accurate

solutions for this structure have been obtained by usitigan the power series expansion. For example, even though

the Hy(curl) TVFEM (Fig. 5). The FFS approach has beeboth approaches fail near dc, the Bagkpansion agrees very

applied to the waveguide for the central frequerfgy= 36 well for high frequencies, whereas the Taylor expansion does

MHz, and solutions have been plotted in Fig. 5 and comparadt. Moreover, at the lower frequency end, although theéPad

with reference results. Furthermore, the error analysis for tegpansion fails eventually, its validity extends much further

first two dominant modes is presented in Figs. 6 and 7, atithn for the power series expansion.

again, Pad expansion results in a better approximation over

the entire frequency range. D. Coplanar Waveguide

i i L Coplanar waveguide (CPW) structures have been attracting

C. Shielded Microstrip Line considerable attention because of their suitability for broad-
The next example in this paper is a shielded microstrigand microwave integrated circuits (MIC's) and microwave

transmission line. Fig. 8 shows a sample microstrip line witlmonolithic integrated circuits (MMIC's), as well as the ease of

B. Anisotropic Waveguide
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2.0 — waveguides. The proposed technique is based on the TVFEM,
1ol o in conjunction with the AWE approach. In the FEM compu-
oo tation, the authors have also developed a modified Lanczos
algorithm, with an additional set of constraint equations, to
g completely eliminate nonphysical solutions during the iteration
g -2.0 process. This algorithm was combined with t&&}(curl)
S a0 TVFEM to obtain EM characteristics of propagating modes
3 o in waveguides for any given frequency point. The frequency
moments for each mode are computed through a recursive
50 procedure to result in a frequency response for a given
-6.0 frequency range. Note that in this recursive procedure, the
gl s s . : matrix does not change and only the RHS has to be updated.
0 50 100 150 200 250 300 350 400

Thus, the moments calculations become inexpensive when
the factorization of the matrix is available. These moments
are then matched via Padpproximation to a reduced-order

Freg[MHz]

Fig. 9. Error versus frequency for the microstrip line ffar= 200 MHz.

: : - - T rational polynomial which can be used to interpolate mode
4.0y Lade Sxpansion © 1 over a frequency band with a high degree of accuracy. Nu-
1ok o v.e- | merical results have shown that ti&(curl) TVFEM, when

e e used together with AWE, provides an efficient procedure for
10.0 t /«,ﬂ"’” e {  modeling 2-D waveguiding structures.
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