
1118 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 7, JULY 1997

Fast Frequency Sweep Technique for the Efficient
Analysis of Dielectric Waveguides
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Abstract—This paper describes a new approach to spectral
response computations of an arbitrary two-dimensional (2-D)
waveguide. This technique is based on the tangential-vector finite-
element method (TVFEM) in conjunction with the asymptotic
waveform evaluation (AWE) technique. The former is used to
obtain modes characteristics for a central frequency, whereas
the latter employs an efficient algorithm to compute frequency
moments for each mode. These moments are then matched via
Padé approximation to a reduced-order rational polynomial,
which can be used to interpolate each mode over a frequency
band with a high degree of accuracy. Furthermore, the moments
computations and subsequent interpolation for a given set of
frequency points can be done much more rapidly than just simple
simulations for each frequency point.

Index Terms—Approximation methods, dielectric waveguides,
electromagnetic propagation, finite-element method, signal anal-
ysis.

I. INTRODUCTION

COMPUTER-AIDED numerical analysis has become a
necessary tool for designing microwave and optical

waveguiding structures such as microstrip lines, optical
channel guides, and optical fibers. Different numerical
techniques have been presented in the past to solve a wide
variety of dielectric waveguide problems [1]–[5]. Among
them is the finite-element method (FEM), which is probably
the most versatile [3], [6]–[8]. By discretizing the waveguide
cross section into a number of triangles and employing the
variational technique, the FEM can be used to accurately
predict the propagation characteristics of any arbitrary
waveguide.

It has been shown by previous researchers that by using
the tangential-vector finite-element method (TVFEM), electro-
magnetic (EM) characteristics of propagating modes in waveg-
uides can be obtained without the occurrence of so-called
spurious solutions [9]–[10]. However, these spurious solutions
are not completely eliminated, but are reduced to a set of
identifiable nonphysical solutions corresponding to the null-
space of the generalized eigenmatrix equation. Consequently,
they can slow down the convergence of desirable modes during
the solution process and cause additional complications. In
this paper, an additional set of constraint equations for the
generalized eigenmatrix equation is introduced. By using this
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Fig. 1. General anisotropic optical waveguide.

set of constraint equations, the nonphysical solutions can be
completely suppressed and the solution space is limited only
to physical modes.

A TVFEM has been previously implemented to
perform a full-wave analysis of an anisotropic waveguide,
which is characterized simultaneously by both off-diagonal
second-rank symmetric and tensors [11]. However, if
one wants to compute a dispersion curve with the propagation
constant versus frequency over a given frequency band, this
analysis has to be repeated for many sampling frequency
points. Consequently, the entire process can become very time
consuming, especially when the number of frequency points
becomes large and the number of unknowns is significant.

To avoid this difficulty, a new approach based on the
asymptotic waveform evaluation (AWE) [12] has been devel-
oped. Starting with the known modes’ characteristics for a
central frequency, the AWE technique employs an efficient
algorithm to compute frequency moments for each mode.
These moments are then matched via Padé approximation
to a reduced order rational polynomial with a high degree
of accuracy. Furthermore, the moments computations and
subsequent interpolation for a given set of frequency points
can be done more rapidly than just simple simulations for each
frequency point. To verify the proposed approach, the method
has been implemented and tested for sample waveguiding
structures and the resultant dispersion curves are compared
with those obtained by the TVFEM. The details of
the formulation, error estimation, and sample numerical results
will be discussed in the following sections.

II. FORMULATION

A. Time-Harmonic Maxwell’s Equations

In Fig. 1, a general waveguiding structure is shown, which
is uniform in the -direction with an arbitrary cross section
in the -plane and the boundary of, consisting of either a
perfect electric conductor (PEC) or a perfect magnetic conduc-
tor (PMC). Assuming time-harmonic excitations, Maxwell’s
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equations can be written as

(1)

where and are the relative permittivity and perme-
ability, respectively, and is the conductivity tensor. In this
paper, they are assumed to be diagonal tensors. Furthermore,
in the frequency domain, and can be combined to
define a complex effective relative permittivity as

(2)

To solve for the wave-propagation characteristics, start by
expressing the fields as

(3)

where is the propagation constant with,
being the attenuation and phase constant, respectively, and

denotes the position vector of a point in the
waveguide.

B. A–V Formulation

In the current formulation, a vector potential,, and a scalar
potential, , are used as unknown variables. They are defined
through the fields as

(4)

Also, it is well known that the vector potential defined by
(4) is not unique without imposing a gauge condition. Instead
of using the conventional Coulomb or Lorenz gauge,
is chosen. This condition will greatly simplify the formulation.
By using (1)–(4) and the gauge condition , Maxwell’s
equations become

(5)

where is the free-space wavenumber and
denotes the inverse matrix of . Taking into account

that , (5) can be rewritten as

(6)

(7)

(8)

where

(9)

Equation (7) can be obtained by subtracting (8) from (6).
Subsequently, in the current formulation, the focus is on
solving (6) and (8) simultaneously. Furthermore, boundary
conditions associated with this formulation are
on PEC’s on PMC’s

(10)

where is the normal vector to the boundary.

III. FINITE-ELEMENT IMPLEMENTATION

A. The Bilinear Form

Equations (6) and (8), and boundary conditions (10) describe
a well-defined boundary value problem (BVP) and are ready
for the application of the FEM. Application of the Galerkin’s
method for the current BVP results in the following bilinear
form:

(11)

where are the testing and trial fields, respectively. Notice
that in an effort to balance the smoothness requirements on
both the trial and testing fields, Green’s theorems are adopted
to derive (11). Moreover, to facilitate this paper’s discussion,
a vector notation has been employed for the potentials as

(12)

Judging from the bilinear form (11), a vector field is
admissible in the bilinear form if, and only if,

(13)

where , are the sets of square integrable functions
and continuous functions in , respectively.

B. Two-Dimensional (2-D) TVFEM

In the Galerkin’s process, one needs to find a complex
number and a vector function , such that
for every in the infinite dimensional space. The FEM is
nothing but replacing by a sequence of finite dimensional
subspaces contained in . In the present approach,
has been chosen to be spanned by the TVFEM basis
functions. Mathematically, a finite dimensional vector space is
defined as , for a 2-D discretization as

(14)

where is the set of piecewise polynomials in with
order complete to . The function space can be
defined simply by

(15)

and is the set of piecewise homogeneousth order
polynomials in . The function space is further
defined by

on (16)
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Fig. 2. 2-DH1

0
(curl) tangential vector element.

Henceforth, the finite dimensional space that is used in
the current FEM formulation is

on (17)

Note that in choosing the FEM space as in (17), the follow-
ing statement is valid: ; thus, we have

. Explicitly, for a triangular element there are
eight vector-basis functions and six scalar-basis functions for
the finite-element space (Fig. 2). Each trial/testing function

can now be written as

(18)

where the six scalar-basis functions are the usual second-
order FEM basis functions, namely

and the eight vector basis functions are given by

where is the Lagrangian interpolation polynomial or simplex
coordinate at vertex [13].

C. Generalized Eigenmatrix Equation

A generalized eigenmatrix equation can finally be obtained
by setting for every . The result is

(19)

where means the summation over the contributions from
each element and are the corresponding coefficient vec-
tor for the finite dimensional approximation of . Moreover,
the element matrixes in (19) are given by

(20)

The integrations in (20) are performed on triangular regions.
To make the computation faster, the matrix equation (19) is
rearranged as

(21)

where and so on, and
is an educated guess, which can be obtained by a quasi-TEM
approximation for an isotropic medium. The reason for this
transformation is as follows. In a lossless dielectric waveguide,
a more dominant mode corresponds to a smallervalue and
as a result, the ratio will be larger. It turns out that
although the Lanczos algorithm can compute both the smallest
and the largest eigenvalues, the latter almost always converges
faster than the former one. Furthermore, from (20) and (21),
it can be concluded that for an anisotropic waveguide charac-
terized by diagonal permittivity and permeability tensors, the
generalized eigenmatrix equation involves two complex, but
symmetric, matrixes. Subsequently, savings in computational
time and storage can be realized by taking advantage of this
symmetry.

D. Constraint Equations

The eigenpair solutions to (21) can be divided
into three groups as follows. The bilinear form (11) and,
subsequently, the generalized eigenmatrix (21) are derived
based on (6) and (8). The solutions of (6) and (8) are
guaranteed to be nontrivial solutions of Maxwell’s equations
only if . When , there are two possibilities:
the cutoff modes, which are still solutions of Maxwell’s
equations, and the trivial solutions , but

. To summarize, the eigenpairs
can be divided into three groups

group 1 (physical modes):

group 2 (cutoff modes):
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group 3 (trivial modes):

This paper’s objective is to develop a constrained Lanczos
algorithm which will solve for the solutions in group 1 and 2
without the occurrences of group 3. To achieve this goal, one
first notices that the group 3 solutions form a vector function
space defined as

(22)

where is a gradient operator scaled by the factor, and
obviously . Furthermore, the number of trivial
modes, or the dimension of , equals the number of
free nodes in the second-order discretization. Although these
trivial solutions can be easily identified and disregarded at the
post-processing stage, their presence can significantly degrade
the performance of the Lanczos algorithm. Therefore, a con-
strained Lanczos algorithm, which completely suppresses the
occurrence of these trivial modes, will enhance the numerical
efficiency and stability.

E. Orthogonality Relations

From (11), the following orthonormal property exists for
the eigensolutions:

(23)

where is the Kronecker delta function. Equation (23) is
the basis for the constraint equation, which will be used in
the constrained Lanczos algorithm. Since a physical solution

from group 1 or group 2 must be orthogonal to any
through (23), the constraint equation for the

physical solutions reduces to the following matrix equation:

(24)

where matrixes and are given by (20). Equation (24)
can be used as a set of additional constraints to restrict the
solution space to the group 1 and 2 solutions in the Lanczos
algorithm.

F. Constrained Lanczos Algorithm

By incorporating the constraint equation (24) into the gen-
eralized algorithm, the following algorithm can be used to
find eigenpairs of the generalized eigenmatrix equation

without the occurrences of group 3 solutions:

1) input an initial guess , and set ;
2) orthogonalize

(a) to previously converged vectors :
;

(b) to the null space : ;

3) solve and normalize to obtain
;

4) , where

5) orthogonalize

(a) to previously converged vectors :
;

(b) to the null space : ;

6) solve for from , and set
, ;

7) calculate of the triangular matrix
where

(25)
8) check the residual norm for conver-

gence; if not converged, increment by 1 and go to
step 4;

9) increment by 1. If all desired modes have converged
then stop, otherwise go to step 1.

The authors would like to comment here that theoretically, if
the initial vector is constructed in such a way that it satisfies
(24), their solution becomes orthogonal to the subspace of
trivial solutions. The purpose of step 5(b) is simply to avoid
the accumulation of a rounding error. Practically, step 5(b)
can be performed selectively.

IV. A SYMPTOTIC WAVEFORM EVALUATION

It has been previously shown that the FEM formulation for
the EM wave propagation in 2-D waveguiding structures leads
to a matrix equation of the form

(26)

where and are the square complex matrixes,is a
given frequency, represents the unknown field components,
and is related to the propagation constant itself. Equation
(26) can be solved directly for the unknown eigenpairs
by using the constrained Lanczos algorithm described above.
However, if one is looking for the solution over a given
frequency band the entire process has to be repeated
for a set of frequencies , such that

to find eigenpairs . After that, the
eigenpair for any arbitrary frequency within the
interval , can be determined based on an interpolation
technique such as linear, quadratic, or spline approximation.

However, if one deals with a big problem, or the number
of sampling points is large, then the entire analysis can
become very time consuming. Consequently, this paper’s goal
is to develop an alternative method for which the spectral
responses over a given frequency range can be determined
efficiently.

To achieve the above goal, a fast frequency sweep (FFS)
technique is proposed and implemented in this paper. The FFS
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approach proposed herein is a combination of the TVFEM,
described in previous sections, and the AWE technique. The
latter has been successfully used for the analysis/simulation
of 2-D/three-dimensional (3-D) interconnect structures on in-
tegrated circuits and has recently gained much attention from
the computer-aided design (CAD) community [12], [14]–[16].
A number of papers have been devoted to AWE as the method
for computing an approximation of the response of a linear
circuit from the circuit’s low-order moments. Furthermore, the
method has been proven by many researchers to be an efficient
and accurate technique for simulating a lumped linear circuit
of arbitrary topologies.

Several attempts have also been recently made to apply
the AWE technique for EM problems and the validity of the
approach has been shown [17]–[19]. In this paper, the AWE
method is extended, based on the rational function approxi-
mation for modeling wave propagation in 2-D waveguiding
structures. Furthermore, the power series expansion and ratio-
nal function approximation are compared, and the results of
the authors’ accuracy are presented.

A. Taylor Expansion

We begin with the following previously obtained general-
ized eigenmatrix equation:

(27)

where the element matrixes are the same as those given by
(20). To facilitate this discussion, (27) is simply rewritten as

(28)

where matrixes , , and eigenpairs are
in general functions of the wavenumberas follows:

(29)

These quantities are first expanded by Taylor series around
. Namely,

(30)

Furthermore, from (20), it can be seen that matrix has
only the component, whereas matrix has contribu-
tions from . Substituting (30) into (28) and matching
the coefficients of corresponding power of , we end
up with the following recursive system of equations to solve:

(31)

Equation (27) must first be solved for the central frequency
using the constrained Lanczos algorithm described previously.
It is worth mentioning that since is an approximate
solution to (27), the matrix is nonsingular and
can be factorized numerically. Taking into account that
is the eigenvector of (28), and multiplying (31) by , ,
consequently can be found recursively. Furthermore, in
this procedure the orthogonality relation must
be satisfied for to insure the numerical stability.

Consequently, in the above process one has to solve the
symmetric eigenmatrix equation (27) only once for the central
frequency point. After that, the corresponding Taylor series
expansion is found by solving (31) with the same matrix

but different right-hand sides (RHS’s). This
process can be performed efficiently once the factorization of
matrix becomes available.

B. Padé Expansion

In many cases, the power-series expansion for the solu-
tion of eigenmatrix equation (27) gives fairly good results.
However, the situation is different if one wants to find an
approximate solution in the proximity of a pole or some other
singularity of the desirable function. In such cases, Taylor
expansion fails to converge, whereas rational interpolation
may still provide satisfactory results. Subsequently, one may
want to replace the Taylor expansion by the so-called Pad´e
expansion to improve the accuracy of the numerical solu-
tion. In this section, the authors’ explain how to construct
a rational function for the eigenvalue . The extension of
this approach to the eigenvector is straightforward and is not
given here. Using the Taylor expansion, one can express an
eigenvalue as

(32)

whereas in the Pad´e expansion, one employs a rational poly-
nomial to interpolate as

(33)

The rational function is defined by its coefficients
(to be determined later). For a given amount of computational
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effort, one can usually construct a rational approximation
which has a smaller error than a polynomial approximation.
Furthermore, for a fixed value of , the error is the
smallest when and have the same degree, or

has a degree one higher than . The rational
polynomial is constructed in such a way that it agrees
with at and their derivative up to degree at

. These conditions result in a system of
linear equations to solve. Namely

(34)

and

(35)

The equations in (35) involve only the unknowns
and, thus, must be solved first. Equations in

(34) are then used to find . Once and
are determined, (33) can be used to compute the

propagation constant at any frequency. The above-described
procedure can be repeated to interpolate each component of
the eigenvector .

V. NUMERICAL RESULTS

To validate the proposed approach, several examples have
been studied. In this paper’s first example, the FFS method
was applied to a partially filled isotropic waveguide. Then,
the method was tested on an anisotropic waveguide. Finally,
a shielded microstrip line and a coplanar waveguide were
considered. For each example, a dispersion curve with the
propagation constant versus frequency has been computed. For
all examples, and values have been chosen to be equal to
15. The results were compared with the solution obtained by
using the TVFEM for different frequency points. Furthermore,
to perform an accuracy study of the proposed method over a
frequency range, the error is defined by

error (36)

where , are the exact matrixes from (28) and
, are the approximate solutions. To compare the

performance of Taylor and Pad´e expansions, the error versus
frequency for each example have been plotted and compar-
isons have also been made.

A. Partially Filled Waveguide

To verify the proposed FFS method, a rectangular wave-
guide partially loaded with a dielectric was first studied, which
is a well-known example that has been analyzed by many

Fig. 3. Dispersion curve of the fundamental mode for the partially filled
waveguide. Central frequency has been chosen to bef0 = 70 MHz. Inset
shows a dielectric waveguide filled with an isotropic material.

Fig. 4. Error versus frequency for the central frequencyf0 = 70 MHz.

researchers. For the geometry shown in the inset of Fig. 3, the
cutoff frequency of the dominant mode equals 31 MHz. The
authors’ objective was to demonstrate that the FFS method
can correctly predict mode characteristics below the cutoff
frequency.

The method is initially used to plot the reference
dispersion curve for the dominant mode over the frequency
interval from 1 to 140 MHz (Fig. 3). The FFS technique is
then applied for the dominant mode starting with the known
mode characteristics for MHz. Two dispersion curves,
computed by Taylor and Pad´e expansions, have been obtained
and plotted in Fig. 3 for [1 MHz, 140 MHz]. From Fig. 3,
one can conclude that for the frequencies smaller than 31
MHz, the dominant solution becomes an attenuating mode,
but still the Pad´e approximation has a good agreement with the
reference curve. On the other hand, the power-series expansion
fails for frequencies smaller than the cutoff. Error analysis (see
Fig. 4), based on (36), only confirms the above conclusion and
suggests that in general, Pad´e expansion may have a potential
advantage over Taylor expansion for physical problems with
complex zeros and poles. Furthermore, it is worth mentioning
that since is an approximate solution to (27) the error
is not exactly 0 at the central frequency.
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Fig. 5. Dispersion curves for the first two modes of the anisotropic wave-
guide. Shown in inset is the geometry of the anisotropic dielectric waveguide
�rx = 170, �ry = �rz = 85.

Fig. 6. Error versus frequency for the dominant mode of the anisotropic
waveguide for the central frequencyf0 = 36 MHz.

B. Anisotropic Waveguide

In this example, a rectangular waveguide is studied, which
is loaded with an anisotropic rectangular insert (Fig. 5). The
dielectric is made of TiO, a material having a very high
permittivity and . The interest in
this problem arose in connection with the realization of maser
amplifiers in the high-frequency region.

The objective for this example was to demonstrate that the
FFS technique proposed herein is able to predict multimodes
characteristics based on one central frequency point. Reference
solutions for this structure have been obtained by using
the TVFEM (Fig. 5). The FFS approach has been
applied to the waveguide for the central frequency
MHz, and solutions have been plotted in Fig. 5 and compared
with reference results. Furthermore, the error analysis for the
first two dominant modes is presented in Figs. 6 and 7, and
again, Pad́e expansion results in a better approximation over
the entire frequency range.

C. Shielded Microstrip Line

The next example in this paper is a shielded microstrip
transmission line. Fig. 8 shows a sample microstrip line with

Fig. 7. Error versus frequency for the second mode of the anisotropic
waveguide for the central frequencyf0 = 36 MHz.

Fig. 8. Dispersion curves for the shielded microstrip line corresponding to
the central frequencyf0 = 200 MHz. Shown in inset is the geometry of the
microstrip line.

a strip, which is assumed to be an infinitely thin PEC. The
dominant mode, which is used for transmission purposes, is
the one having a zero cutoff frequency. At cutoff, it reduces
to a transverse electric and magnetic mode.

The solution procedure starts by solving for the normalized
propagation constant by using the TVFEM. After
that, the FFS analysis was carried out for the central frequency

MHz. Both Taylor and Pad´e expansions have been
obtained from 1 to 500 MHz, and results are plotted in Fig. 8.
The results shown, as well as the error analysis in Fig. 9, prove
that the rational polynomial approximation is more accurate
than the power series expansion. For example, even though
both approaches fail near dc, the Padé expansion agrees very
well for high frequencies, whereas the Taylor expansion does
not. Moreover, at the lower frequency end, although the Padé
expansion fails eventually, its validity extends much further
than for the power series expansion.

D. Coplanar Waveguide

Coplanar waveguide (CPW) structures have been attracting
considerable attention because of their suitability for broad-
band microwave integrated circuits (MIC’s) and microwave
monolithic integrated circuits (MMIC’s), as well as the ease of
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Fig. 9. Error versus frequency for the microstrip line forf0 = 200 MHz.

Fig. 10. The dispersion curves for the first three modes for the structure
shown in inset with dimensionsw = 0:2 mm, a = 2 mm, h1 = 0:2 mm,
h2 = 0:6 mm, s = 0:1 mm, and�r = 12:9. Padé expansion has been
obtained based on the known modes characteristics for the central frequency
f0 = 35 GHz.

incorporation of series and shunt elements. In the final example
in this paper, the dispersion characteristics of a conductor-
backed coplanar waveguide (CBCPW) in a metal enclosure
are studied. The dispersion characteristics are computed for
three modes using the proposed FFS procedure.

The structure is enclosed in a perfectly conducting channel
and assumed to be uniform and infinite in the-direction. Both
the ground plane and central strips are assumed to be perfectly
conducting and infinitely thin, and the dielectric substrate
is assumed to be lossless. For this example the comparison
between the reference solutions and FFS solutions, for the
central frequency MHz, is presented in Fig. 10.
In Fig. 10, only results of the Pad´e expansion are included,
since they are much more accurate than those of the Taylor
expansion.

From all examples in this section, it can be concluded, in
general, that the FFS procedure provides a good approximation
for mode characteristics and may be used in the future for the
efficient computations of waveguide modes.

VI. CONCLUSION

In this paper, the authors have described a novel approach
to efficiently compute the spectral responses of arbitrary 2-D

waveguides. The proposed technique is based on the TVFEM,
in conjunction with the AWE approach. In the FEM compu-
tation, the authors have also developed a modified Lanczos
algorithm, with an additional set of constraint equations, to
completely eliminate nonphysical solutions during the iteration
process. This algorithm was combined with the
TVFEM to obtain EM characteristics of propagating modes
in waveguides for any given frequency point. The frequency
moments for each mode are computed through a recursive
procedure to result in a frequency response for a given
frequency range. Note that in this recursive procedure, the
matrix does not change and only the RHS has to be updated.
Thus, the moments calculations become inexpensive when
the factorization of the matrix is available. These moments
are then matched via Padé approximation to a reduced-order
rational polynomial which can be used to interpolate mode
over a frequency band with a high degree of accuracy. Nu-
merical results have shown that the TVFEM, when
used together with AWE, provides an efficient procedure for
modeling 2-D waveguiding structures.
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